Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.057
Filtrar
1.
Front Cell Dev Biol ; 12: 1343962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628595

RESUMO

Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.

2.
Alzheimers Dement ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629936

RESUMO

INTRODUCTION: Cerebral small vessel disease (SVD) is a common cause of stroke/vascular dementia with few effective treatments. Neuroinflammation and increased blood-brain barrier (BBB) permeability may influence pathogenesis. In rodent models, minocycline reduced inflammation/BBB permeability. We determined whether minocycline had a similar effect in patients with SVD. METHODS: MINERVA was a single-center, phase II, randomized, double-blind, placebo-controlled trial. Forty-four participants with moderate-to-severe SVD took minocycline or placebo for 3 months. Co-primary outcomes were microglial signal (determined using 11C-PK11195 positron emission tomography) and BBB permeability (using dynamic contrast-enhanced MRI). RESULTS: Forty-four participants were recruited between September 2019 and June 2022. Minocycline had no effect on 11C-PK11195 binding (relative risk [RR] 1.01, 95% confidence interval [CI] 0.98-1.04), or BBB permeability (RR 0.97, 95% CI 0.91-1.03). Serum inflammatory markers were not affected. DISCUSSION: 11C-PK11195 binding and increased BBB permeability are present in SVD; minocycline did not reduce either process. Whether these pathophysiological mechanisms are disease-causing remains unclear. INTERNATIONAL CLINICAL TRIALS REGISTRY PORTAL IDENTIFIER: ISRCTN15483452 HIGHLIGHTS: We found focal areas of increased microglial signal and increased blood-brain barrier permeability in patients with small vessel disease. Minocycline treatment was not associated with a change in these processes measured using advanced neuroimaging. Blood-brain barrier permeability was dynamic but MRI-derived measurements correlated well with CSF/serum albumin ratio. Advanced neuroimaging is a feasible outcome measure for mechanistic clinical trials.

3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621897

RESUMO

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Medicina Tradicional Chinesa , Qualidade de Vida , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle
4.
Neurol Res ; : 1-13, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563325

RESUMO

BACKGROUND: Vascular dementia (VD) is the second most common type of dementia worldwide. Previous studies have proven that transcranial direct current stimulation (tDCS) has potential applications in relieving cognitive impairment in VD animal models. The purpose of this study was to probe the mechanism by which tDCS combined with swimming exercise improves the learning and memory abilities of VD model rats. METHOD: The VD rat model was induced using the permanent bilateral common carotid artery occlusion (2-VO) method; tDCS was applied to the rats and then they took part in swimming exercises. Rat memory, platform crossing time, and platform crossing frequency were analyzed via a water maze experiment. Nerve damage in the cortex and hippocampal CA1 area of the rats was observed using Nissl staining. Western blotting, immunohistochemistry, immunofluorescence staining and reverse transcription quantitative polymerase chain reaction (RT - qPCR) were used to determine the expression of related proteins and genes. The levels of oxidative stress were detected by kits. RESULTS: We demonstrated that VD model rats treated with tDCS combined with swimming exercise exhibited significant improvement in memory, and VD model rats exhibited significantly reduced neuronal loss in the hippocampus, and reduced microglial activation and M1 polarization. tDCS combined with swimming exercise protects VD model rats from oxidative stress through the miR-223-3p/protein arginine methyltransferase 8 (PRMT8) axis and inhibits the activation of the TLR4/NF-κB signaling pathway. CONCLUSION: Our results suggest that tDCS combined with swimming exercise improved the learning and memory ability of VD model rats by regulating the expression of PRMT8 through miR-223-3p to affect microglial activation and M1 polarization.

5.
Mol Neurobiol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565786

RESUMO

(CCG) short tandem repeats (STRs) are predominantly enriched in genic regions, mutation hotspots for C to T truncating substitutions, and involved in various neurological and neurodevelopmental disorders. However, intact blocks of this class of STRs are widely overlooked with respect to their link with natural selection. The human neuron-specific gene, DISP2 (dispatched RND transporter family member 2), contains a (CCG) repeat in its 5' untranslated region. Here, we sequenced this STR in a sample of 448 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 203) and controls (N = 245). We found that the region spanning the (CCG) repeat was highly mutated, resulting in several flanking (CCG) residues. However, an 8-repeat of the (CCG) repeat was predominantly abundant (frequency = 0.92) across the two groups. While the overall distribution of genotypes was not different between the two groups (p > 0.05), we detected four genotypes in the NCD group only (2% of the NCD genotypes, Mid-p = 0.02), consisting of extreme short alleles, 5- and 6-repeats, that were not detected in the control group. The patients harboring those genotypes received the diagnoses of probable Alzheimer's disease and vascular dementia. We also found six genotypes in the control group only (2.5% of the control genotypes, Mid-p = 0.01) that consisted of the 8-repeat and extreme long alleles, 9- and 10-repeats, of which the 10-repeat was not detected in the NCD group. The (CCG) repeat specifically expanded in primates. In conclusion, we report an indication of natural selection at a novel hypermutable region in the human genome and divergent alleles and genotypes in late-onset NhCDs and controls. These findings reinforce the hypothesis that a collection of rare alleles and genotypes in a number of genes may unambiguously contribute to the cognition impairment component of late-onset NCDs.

6.
Heart Rhythm ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604586

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with the development of dementia and observational studies have shown that oral anticoagulation (OAC) and catheter ablation reduce dementia risk. However, such studies did not consistently report on periprocedural anticoagulation and long term OAC coverage, for which reason the separate effect of AF ablation on dementia risk could not be established. OBJECTIVE: We evaluated the protective effect of AF ablation in large cohort who received optimized anticoagulation and compared them with patients who were managed medically. METHODS: We retrospectively included 5,912 consecutive patients who underwent first-time catheter ablation for AF between 2008 and 2018 and compared them with 52,681 control individuals from the Swedish Patient Register. Propensity score matching produced two cohorts of equal size (n=3,940) with similar baseline characteristics. Dementia diagnosis was identified based on ICD-codes from the patient register. RESULTS: The majority of PS-matched patients were on an OAC at the start (94.5%) and end (75.0%) of the study. Mean follow-up was 4.9±2.8 years. Catheter ablation was associated with lower risk for the dementia diagnosis compared with the control group (HR 0.44, 95% CI 0.22-0.86, P=0.017). The result was similar when including patients with a stroke diagnosis prior to inclusion (HR 0.50, 95% CI 0.28-0.89, P=0.019) and after adjusting for the competing risk of death (HR 0.41, 95% CI 0.20-0.86, P=0.018). CONCLUSIONS: Catheter ablation of AF in patients with optimized OAC therapy was associated with a reduction in dementia diagnosis, even after adjusting for potential confounders and for competing risk of death.

7.
Immun Ageing ; 21(1): 23, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570813

RESUMO

BACKGROUND: It is of interest whether inflammatory biomarkers can improve dementia prediction models, such as the widely used Cardiovascular Risk Factors, Aging and Dementia (CAIDE) model. METHODS: The Olink Target 96 Inflammation panel was assessed in a nested case-cohort design within a large, population-based German cohort study (n = 9940; age-range: 50-75 years). All study participants who developed dementia over 20 years of follow-up and had complete CAIDE variable data (n = 562, including 173 Alzheimer's disease (AD) and 199 vascular dementia (VD) cases) as well as n = 1,356 controls were selected for measurements. 69 inflammation-related biomarkers were eligible for use. LASSO logistic regression and bootstrapping were utilized to select relevant biomarkers and determine areas under the curve (AUCs). RESULTS: The CAIDE model 2 (including Apolipoprotein E (APOE) ε4 carrier status) predicted all-cause dementia, AD, and VD better than CAIDE model 1 (without APOE ε4) with AUCs of 0.725, 0.752 and 0.707, respectively. Although 20, 7, and 4 inflammation-related biomarkers were selected by LASSO regression to improve CAIDE model 2, the AUCs did not increase markedly. CAIDE models 1 and 2 generally performed better in mid-life (50-64 years) than in late-life (65-75 years) sub-samples of our cohort, but again, inflammation-related biomarkers did not improve their predictive abilities. CONCLUSIONS: Despite a lack of improvement in dementia risk prediction, the selected inflammation-related biomarkers were significantly associated with dementia outcomes and may serve as a starting point to further elucidate the pathogenesis of dementia.

8.
Can J Cardiol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38579965

RESUMO

Vascular dementia (VaD) is a prevalent form of cognitive impairment with underlying vascular etiology. In this review, we examine recent genetic advancements in our understanding of VaD, encompassing a range of methodologies including genome-wide association studies (GWAS), polygenic risk scores (PRS), heritability estimates, and family studies for monogenic disorders revealing the complex and heterogeneous nature of the disease. We report well-known genetic associations and highlight potential pathways and mechanisms implicated in VaD and its pathological risk factors, including stroke, cerebral small vessel diseases and cerebral amyloid angiopathy. Moreover, we discuss important modifiable risk factors such as hypertension, diabetes, and dyslipidemia, emphasizing the importance of a multifactorial approach in prevention, treatment, and understanding the genetic basis of VaD. Lastly, we outline several areas of scientific advancements to improve clinical care, highlighting that large-scale collaborative efforts, together with an integromics approach can enhance the robustness of genetic discoveries. Indeed, understanding the genetics of VaD and its pathophysiological risk factors hold the potential to redefine VaD based on molecular mechanisms and generate novel diagnostic, prognostic, and therapeutic tools.

9.
J Alzheimers Dis ; 98(4): 1503-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640163

RESUMO

Background: Population-based studies have shown an increased risk of dementia after infections, but weaker links were reported for autoimmune diseases. Evidence is scarce for whether the links may be modified by the dementia or exposure subtype. Objective: We aimed to investigate the association between infections and/or autoimmune diseases and rates of major types of dementias in the short- and long terms. Methods: Nationwide nested case-control study of dementia cases (65+ years) diagnosed in Denmark 2016-2020 and dementia-free controls. Exposures were hospital-diagnosed infections and autoimmune diseases in the preceding 35 years. Two groups of dementia cases were those diagnosed in memory clinics (MC) and those diagnosed outside memory clinics (non-memory clinic cases, NMC). Results: In total, 26,738 individuals were MC and 12,534 were NMC cases. Following any infection, the incidence rate ratio (IRR) for MC cases was 1.23 (95% CI 1.20-1.27) and 1.70 for NMC cases (1.62-1.76). Long-term increased rates were seen for vascular dementia and NMC cases. IRRs for autoimmune diseases were overall statistically insignificant. Conclusions: Cases with vascular dementia and not Alzheimer's disease, and a subgroup of cases identified with poorer health have increased long-term risk following infections. Autoimmune diseases were not associated with any type of dementia. Notably increased risks (attributed to the short term) and for NMC cases may indicate that immunosenescence rather than de novo infection explains the links. Future focus on such groups and on the role of vascular pathology will explain the infection-dementia links, especially in the long term.


Assuntos
Doença de Alzheimer , Doenças Autoimunes , Demência Vascular , Humanos , Estudos de Casos e Controles , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doenças Autoimunes/epidemiologia , Hospitais
10.
Geroscience ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639833

RESUMO

Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.

11.
Arch Gerontol Geriatr ; 124: 105441, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643666

RESUMO

BACKGROUND: The breakdown of the blood-brain barrier (BBB) is intricately linked to the onset and advancement of cognitive impairment and dementia. This investigation explores the correlation between blood-brain barrier permeability, assessed through the cerebrospinal fluid/serum albumin ratio (QAlb), in a clinical cohort and the evolution of cognitive decline. METHODS: This prospective observational cohort study included 295 participants. Cognitive decline progression was characterized by an escalation in the overall deterioration scale and/or clinical dementia rating scores. The investigation delves into the correlation between blood-brain barrier permeability and the advancement of cognitive impairment among patients. RESULTS: The APOE 4 allele and diabetes mellitus among individuals exhibited increased BBB permeability (P < 0.05). Moreover, AD patients exhibited the highest QAlb levels, signifying elevated BBB permeability compared to individuals with MCI and SCD (P < 0.05). After mean 17 months following up, 117 patients (51.31 %) were identified as experiencing cognitive decline progression, and we found that only AD diagnosis, CDR, and QAlb (All P < 0.05) were significant predictors of cognitive decline progression. CONCLUSION: Our study emphasizes the clinical relevance of QAlb in detecting individuals with an elevated risk of cognitive decline. It suggests that heightened BBB permeability could contribute to clinical deterioration and serves as a plausible therapeutic target.

13.
Brain Res ; : 148917, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582415

RESUMO

Exploring the intricate pathogenesis of Vascular Dementia (VD), there is a noted absence of potent treatments available in the current medical landscape. A new brain-protective medication developed in China, Edaravone dexboeol (EDB), has shown promise due to its antioxidant and anti-inflammatory properties, albeit with a need for additional research to elucidate its role and mechanisms in VD contexts. In a research setup, a VD model was established utilizing Sprague-Dawley (SD) rats, subjected to permanent bilateral typical carotid artery occlusion (2VO). Behavioral assessment of the rats was conducted using the Bederson test and pole climbing test, while cognitive abilities, particularly learning and memory, were evaluated via the novel object recognition test and the Morris water maze test. Ensuing, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), IL-1ß, IL-6, IL-4, and tumor necrosis factor-α (TNF-α) were determined through Enzyme-Linked Immunosorbent Assay (ELISA). Synaptic plasticity-related proteins, synaptophysin (SYP), post-synaptic density protein 95 (PSD-95), and N-methyl-D-aspartate (NMDA) receptor proteins (NR1, NR2A, NR2B) were investigated via Western blotting technique. The findings imply that EDB has the potential to ameliorate cognitive deficiencies, attributed to VD, by mitigating oxidative stress, dampening inflammatory responses, and modulating the NMDA receptor signaling pathway, furnishing new perspectives into EDB's mechanism and proposing potential avenues for therapeutic strategies in managing VD.

14.
Neuropeptides ; 105: 102428, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38583362

RESUMO

RNA methylation can epigenetically regulate learning and memory. However, it is unclear whether RNA methylation plays a critical role in the pathophysiology of Vascular dementia (VD). Here, we report that expression of the fat mass and obesity associated gene (FTO), an RNA demethylase, is downregulated in the hippocampus in models of VD. Through prediction and dual-luciferase reporters validation studies, we observed that miRNA-711 was upregulated after VD and could bind to the 3'-untranslated region of FTO mRNA and regulate its expression in vitro. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and functional study confirmed that Syn1 was an important target gene of FTO. This suggests that FTO is an important regulator of Syn1. FTO upregulation by inhibition of miR-711 in the hippocampus relieves synaptic association protein and synapse deterioration in vivo, whereas FTO downregulation by miR-711 agomir in the hippocampus leads to aggravate the synapse deterioration. FTO upregulation by inhibition of miR-711 relieves cognitive impairment of rats VD model, whereas FTO downregulation by miR-711 deteriorate cognitive impairment. Our findings suggest that FTO is a regulator of a mechanism underlying RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion.

15.
Neurosci Res ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458494

RESUMO

Neurodegenerative diseases (ND) affect distinct populations of neurons and manifest various clinical and pathological symptoms. A subset of ND prognoses has been linked to vascular risk factors. Consequently, the current study investigated retinal vascular abnormalities in a murine model of Lafora neurodegenerative disease (LD), a fatal and genetic form of progressive myoclonus epilepsy that affects children. Here, arterial rigidity was evaluated by measuring pulse wave velocity and vasculature deformations in the retina. Our findings in the LD mouse model indicate altered pulse wave velocity, retinal vascular thinning, and convoluted retinal arteries.

16.
Int J Med Sci ; 21(4): 644-655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464836

RESUMO

Vascular dementia (VD) is the second most prevalent dementia type, with no drugs approved for its treatment. Here, the effects of Banhabaekchulcheonma-Tang (BBCT) on ischemic brain injury and cognitive function impairment were investigated in a bilateral carotid artery stenosis (BCAS) mouse model. Mice were divided into sham-operated, BCAS control, L-BBCT (40 ml/kg), and H-BBCT (80 ml/kg) groups. BBCT's effects were characterized using the Y-maze test, novel object recognition test (NORT), immunofluorescence staining, RNA sequencing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The NORT revealed cognitive function improvement in the H-BBCT group, while the Y-maze test revealed no significant difference among the four groups. The CD68+ microglia and GFAP+ astrocyte numbers were reduced in the H-BBCT group. Furthermore, H-BBCT treatment restored the dysregulation of gene expression caused by BCAS. The major BBCT targets were predicted to be cell division cycle protein 20 (CDC20), Epidermal growth factor (EGF), and tumor necrosis factor receptor-associated factor 1 (TRAF1). BBCT regulates the neuroactive ligand-receptor interaction and neuropeptide signaling pathways, as predicted by KEGG and GO analyses, respectively. BBCT significantly improved cognitive impairment in a BCAS mouse model by inhibiting microglial and astrocyte activation and regulating the expression of CDC20, EGF, TRAF1, and key proteins in the neuroactive ligand-receptor interaction and neuropeptide signaling pathways.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Estenose das Carótidas , Disfunção Cognitiva , Neuropeptídeos , Animais , Camundongos , Estenose das Carótidas/complicações , Estenose das Carótidas/tratamento farmacológico , Fator de Crescimento Epidérmico/metabolismo , Ligantes , Fator 1 Associado a Receptor de TNF/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Cognição , Modelos Animais de Doenças , Neuropeptídeos/metabolismo , Camundongos Endogâmicos C57BL
17.
Phytomedicine ; 128: 155369, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38547618

RESUMO

BACKGROUND: Mitochondrial dysfunction is key to the pathogenesis of vascular dementia (VaD). Sirtuin-3 (SIRT3), an essential member of the sirtuins family, has been proven to be a critical sirtuin in regulating mitochondrial function. The phenolic glucoside gastrodin (GAS), a bioactive ingredient from Gastrodiae Rhizome (known in Chinese as Tian ma) demonstrates significant neuroprotective properties against central nervous system disorders; however, the precise mechanisms through which GAS modulates VaD remain elusive. PURPOSE: This study aims to investigate whether GAS confers a protective role against VaD, and to figure out the underlying molecular mechanisms. METHODS: A bilateral common carotid artery occlusion (BCCAO)-mediated chronic cerebral hypoperfusion (CCH) VaD rat model and a hypoxia model using HT22 cells were employed to investigate pharmacological properties of GAS in mitigating mitochondrial dysfunction. A SIRT3 agonist resveratrol (RES), a SIRT3 inhibitor 3-TYP and SIRT3-knockdown in vitro were used to explore the mechanism of GAS in association with SIRT3. The ability of SIRT3 to bind and deacetylate mitochondrial transcription factor A (TFAM) was detected by immunoprecipitation assay, and TFAM acetylation sites were further validated using mass spectrometry. RESULTS: GAS increased SIRT3 expression and ameliorated mitochondrial structure, mitochondrial respiration, mitochondrial dynamics along with upregulated TFAM, mitigating oxidative stress and senescence. Comparable results were noted with the SIRT3 agonist RES, indicating an impactful neuroprotection played by SIRT3. Specifically, the attenuation of SIRT3 expression through knockdown techniques or exposure to the SIRT3 inhibitor 3-TYP in HT22 cells markedly abrogated GAS-mediated mitochondrial rescuing function. Furthermore, our findings elucidate a novel facet: SIRT3 interacted with and deacetylated TFAM at the K5, K7, and K8 sites. Decreased SIRT3 is accompanied by hyper-acetylated TFAM. CONCLUSION: The present results were the first to demonstrate that the SIRT3/TFAM pathway is a protective target for reversing mitochondrial dysfunction in VaD. The findings suggest that GAS-mediated modulation of the SIRT3/TFAM pathway, a novel mechanism, could ameliorate CCH-induced VaD, offering a potentially beneficial therapeutic strategy for VaD.

18.
Curr Neurovasc Res ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38551043

RESUMO

BACKGROUND: Recent research advancements have indicated a potential association between gut microbiota and cerebrovascular diseases, although the precise causative pathways and the directionality of this association remain to be fully elucidated. OBJECTIVE: This study utilized a bidirectional two-sample Mendelian Randomization (MR) methodology to explore the causal impact of gut microbiota compositions on the risk of cerebrovascular disease. METHODS: Genome-wide Association Study (GWAS) data pertaining to gut microbiota were obtained from the MiBioGen consortium. For Ischemic Stroke (IS), Transient Ischemic Attack (TIA), Vascular Dementia (VD), and Subarachnoid Hemorrhage (SAH), GWAS summary data were sourced from the FinnGen consortium, the IEU Open GWAS project, and the GWAS catalog, respectively. RESULTS: Our MR analyses identified that specific bacterial strains, notably those involved in the production of Short-chain Fatty Acids (SCFAs), including Barnesiella, Ruminococcus torques group, and Coprobacter, serve as protective factors against IS, TIA, and SAH. Linkage Disequilibrium Score Regression (LDSC) analysis corroborated a significant genetic correlation between these gut microbiota strains and various forms of cerebrovascular disease. In contrast, reverse MR analysis failed to establish a bidirectional causal relationship between genetically inferred gut microbiota profiles and these cerebrovascular conditions. CONCLUSION: This investigation has pinpointed particular strains of gut microbiota that play protective or detrimental roles in cerebrovascular disease pathogenesis. These findings offer valuable insights that could be pivotal for the clinical management, prevention, and treatment of cerebrovascular diseases.

19.
Ageing Res Rev ; 96: 102278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513772

RESUMO

Vascular dementia (VaD) is the second most common type of dementia. VaD is synonymous with ageing, and its symptoms place a significant burden on the health and wellbeing of older people. Despite the identification of a substantial number of risk factors for VaD, the pathological mechanisms underpinning this disease remain to be fully elucidated. Consequently, a biogerontological imperative exists to highlight the modifiable lifestyle factors which can mitigate against the risk of developing VaD. This review will critically examine some of the factors which have been revealed to modulate VaD risk. The survey commences by providing an overview of the putative mechanisms which are associated with the pathobiology of VaD. Next, the factors which influence the risk of developing VaD are examined. Finally, emerging treatment avenues including epigenetics, the gut microbiome, and pro-longevity pharmaceuticals are discussed. By drawing this key evidence together, it is our hope that it can be used to inform future experimental investigations in this field.


Assuntos
Demência Vascular , Humanos , Idoso , Demência Vascular/etiologia , Fatores de Risco
20.
Brain Res ; 1833: 148884, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527712

RESUMO

Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...